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The time-dependent strength behaviour of a partially stabilized zirconia ceramic (Mg-PSZ) 
when subjected to constant static and cyclic stresses as well as constant stress rates is 
analysed in terms of a statistical fracture mechanics model given earlier by the authors. Given 
the lifetimes for either constant static stresses or constant stress rates it is possible to estimate 
the lifetimes for constant cyclic stresses. There is good agreement between the predicted and 
actual lifetimes under cyclic stresses if the data for constant stress rates are used with the 
theory. The limitations of the conventional single-crack theory for lifetime predictions relative 
to the statistical fracture mechanics approach are highlighted. 

1. Introduction 
There are two main factors which control the lifetimes 
of structural components made from ceramic materials. 
One is geometrical, being characterized by the statis- 
tical distribution of flaw sizes due to the compacting 
and sintering process as well as any subsequent shaping 
operations; the other is mechanical, due to the spread- 
ing of the pre-existing flaws enhanced by a stress- 
corrosion mechanism at the flaw tips [1-3]. Accurate 
lifetime predictions can only be made if these two 
factors are properly considered in the evaluation 
procedures. Conventionally, the geometrical factor is 
discarded in the lifetime analysis since it is thought 
that the largest single flaw determines the strength. 
The time-to-failure is then simply the time required for 
that flaw to grow from an inherent size (ai) to a critical 
size (ac) at which time the fracture toughness (K~c) of 
the ceramic material is reached. The rate of crack 
growth (da/dt) is best described by the following 
power law relationship [3]: 

da/dt = AI~  (1) 

where A is a material environment constant, n is the 
stress-corrosion exponent and K~ is the applied stress 
intensity factor at the flaw tip. In previous papers [4, 
5] the authors have developed a statistical time-depen- 
dent fracture model for brittle materials by including 
both the geometrical and mechanical factors. It is 
shown there that the single-crack approach always 
underestimates the failure lifetimes compared to the 
statistical fracture theory for cases where the samples 
are under constant sustained stresses (aa) and constant 
stress rates (#a). For many ceramic materials with the 
Weibull modulus for inert strength distribution (m) 
between 5 and 20, and the stress-corrosion exponent 
(n) between 10 and 80, the difference is at most about 
80%. This magnitude of difference is unfortunately 
difficult to discern from the experimental data because 
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of the expected large scatter for brittle materials. 
However, for samples subjected to constant-amplitude 
cyclic stresses (ac) due to rotation bending in W6hler 
machines, the predicted lifetimes to failure are much 
less for the statistical fracture model than the single- 
crack theory [5]. This has provided a simple discrimi- 
nating test for the accuracy and usefulness of the two 
different approaches. 

Swain [6] has recently obtained lifetime data for 
a magnesia-stabilized zirconia (Mg-PSZ, maximum 
strength (MS) grade from Nilcra, Melbourne, Austra- 
lia) when subjected to constant static stresses, constant 
stress rates and cyclic stresses. He has shown that the 
single-crack theory is inconsistent with the cyclic stress 
data. In this paper the authors attempt to re-analyse 
these lifetime data using the statistical fracture model 
given earlier [4, 5]. 

2. Background theory 
The details of the statistical fracture model for the 
time-dependence of strength of ceramic materials have 
already been given [4, 5]. In the following only the 
basic equations which are required to analyse the 
lifetime data in Section 3 are presented. 

By assuming the flaws to be randomly distributed 
within the volume V of the sample and the flaw size 
distribution q(a) to follow a Pareto function, 

= 

q(a) \ 2ao ] \ a ] ao <~ a (2) 

q(a) = 0 a < ao 

where Qr is the flaw density and a 0 is the smallest flaw, 
it can be shown that the failure probability at stress aa 
[7] is 

F(~a) = 1 - exp - _ ._ .~ ;q(a)  d a d  (3) 
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It is also assumed that Or is small so that there is no 
flaw interaction and a is the equivalent length of the 
Griffith flaw lying normal to the maximum principal 
stress. 

In the statistical fracture model it is realised that all 
the flaws will spread with time t under a given applied 
stress G,  and the growth rate of each individual flaw 
is determined by Equation 1. This means that the flaw 
size distribution q(a) will change with time to q(a, t). 
If there are no new flaws nucleated during this stage it 
can be shown [5] that 

oo oo 
Is q(a, t )da  = f~,(~,,,)q(a)da (4) 

where a~ is the reference flaw size at t = 0 and is 
related to size a at time t [5] by 

q2/(2 n) 
ar(aa ' / )  = I 1 q- ( 2 - - 1 )  A Y 2 K ~ c  20"2tJ a(rra) 

(5) 

where Y is a geometry correction factor. 
The failure probabilities can now be derived from 

Equation 3 by replacing q(a) with q(a, t) and using 
Equations 4 and 5 when performing the integration, 
i.e. 

F(aa, tf) = 1 -  e x p [ - y v f s  (3a) 

The stresses acting at the flaws (a) are a function of o a 
and depend on their positions (x, y) within the volume 
of the saml~le. 

In Swain's experiments, the lifetime data for con- 
stant sustained stresses (O'a) and constant stress rates 
(G = d,t) were obtained from rectangular cross- 
section samples under four- and three-point bending, 
respectively; but the lifetime data for constant- 
amplitude cyclic stresses (ac) in rotation bending were 
derived from circular cross-section rods. Noting these 
differences in specimen geometry and loading con- 
figuration in the integration o f  Equation 3a, the 
following lifetime prediction equations are obtained 
[5]. Thus 

2ff~4 2 
tran = Is4 = (n - 2) A y2K~I c- 2 

k(m + 1)(n - in \7 - -=-7) l  

(6) 

for the constant sustained stress case (i.e. o- a = con- 
stant), 

26"aa~,32(n + 1) 
0"~+1 = ( / f aa )n+ l  = (~ald3 = ( n -  2)Ay2K~Io 2 

p(  mn + n  - 2  "~21n( 1__~]("-2' / '~ 
x kk(m + 1)(n - 2)) \1 - F/J 

(7) 

for the constant stress rate case (i.e. O'a = constant), 

and finally 

20-~727C 
(n - 2) A Y2/q'i c 2 

F(m n_ +___ 2n - 4) 
• kk  2(n - 2) 

x in ( 1 _ _ _ ~ ] ( .  2)/m/ 
\1 - U J  / r= sin n dx x (s) 

for the rotation bending case in which a, = G sin cot 
and co is the frequency. In Equations 6 to 8 the nor- 
malized stress parameters a ,  are given by 

= (2(m q- 1)) l/m 
0"*4 O'0 k V 4 7  

(2(m 4- 1)2~ 1/m (9) 
o-,3 = ~ 0 \  1/30: 1 

o" 0 
O-,c - -  (vc0f) l/m 

where the subscripts 3, 4 and c for V indicate the mode 
of loading and a0 is related to the smallest flaw size a0 
by 

ao = K, cY(ao) 1/2 (10) 

and Y = (2/re) 1/2 for a penny-shaped crack. In deriving 
Equation 8 it is assumed that the cyclic fatigue effect 
is negligible. 

Now, given the lifetime data for either constant 
sustained stress or constant stress rate it is possible to 
predict lifetimes of the other as well as those for 
constant-amplitude cyclic stress from Equations 6 to 
8. This is because the constants 7~s4, 2a3 and ;~o are 
interconnected by 

~ s 4 -  ( 1  " ] ( V 3 ( n - 2 )  )(" 2)/m 
~d3 \n-~--1f\V4(mn + n -- 2)/ ( l la)  

"~s4 1 (4(mn + n -  2)Vo~ c" 2)/mfo/2 
~o - ~ \ ( ~ n g - 2 n  4~4 / s i n ' x d x  

( l ib)  

~d3 - -  (n + 1"]( 4(mn + n  - 2)2Vc ~(n-2)lm 

~[c \ rc ) \ ( n  - 2)(mn + 2n - 4)V3} 

j2 
x sin"x dx (l lc) 

In the single-crack approach for lifetime predictions 
it is possible to combine the Weibull inert strength 
distribution function [8] 

F(G) = 1 - exp [ - (c r . /a . )  m] (12) 

in the calculations. This technique has been used by 
Jakus et al. [9] and the lifetime equations [5] are 

20"*- 2 II n ( 1 ~ ]  (n-2)/m 
tra~ = 2s = (n - 2)Ay2K~o 2 \1 - F/J  

(13) 

2d, (n + 1) o-~ 2 
(trd'af § = o-~ +l = 6"~2a = 

(n - 2) A y2K~Ic2 

x [ l n (  1 ~](n--2,/m 
\ i ~ - ~ )  j (14) 
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for  the cons tant  sustained stress, cons tant  stress rate 
and cyclic stress cases, respectively. No te  that  these 
equat ions  do not  depend on the specimen geomet ry  
and loading configurat ion.  The  relations between the 
constants  2s, 2d and  2 c are given by 

2s 1 
- (16a) 

"~d n +  1 

2s _ 1 fZ /Zs in .xdx  (16b) 
Z c g 

:2/2 sinnx d x  (16c) 

7 

Figure ] (a) Strength distribution of MS-grade Mg-PSZ 
ceramic at a constant stress rate of 38MPasec -~ at 
room temperature (m = 17.4). (b) Bend strength 
(three-point loading) as a function of stress rate. 
(After Swain [6]). 

Interestingly, unlike the statistical fracture approach ,  
the Weibull  modulus  m does not  enter into any 
of  Equat ions  16. The ratios of  the 2 constants  are 
only determined by the stress-corrosion exponent  
/ ' / .  

3. Comparison of t h e o r y  w i t h  
experimental data 

Figs 1-3 show the experimental  da ta  obta ined by 
Swain [6] on an M g - P S Z  ceramic for the three cases of  
constant  stress rates, constant  sustained and cyclic 
stresses, respectively. Using Equa t ion  7 and Fig. l b 
the stress-corrosion exponent  n is determined to 
be 52.8 and logmZd3 is 153.86 for a 50% failure 
probabil i ty.  Fig. la  shows the Weibull plot o f  the 
fracture strength at a stress rate of  38 M P a  sec-  ~ and 
this gives an effective Weibull  modulus  m* of  17.4. In 
H u  et al. [5] it is shown that  the true Weibull  modulus  
(m) defined in Equat ion  2 is increased to m* by slow 
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Figure 2 (*) Lifetime data for Nilcra's MS- 
grade Mg-PSZ tested in static four-point 
loading. (After Swain [6]). ( ) Predicted 
from statistical model using constant stress 
rate data in Fig. l; ( . . . . .  ) predicted using 
single-crack theory. 

crack growth [9-11] and 

m = m * ( n  - 2)/(n + 1) (17) 

so that m = 16.4. Now Equation 1 la can be used to 
obtain ,~4 since m, n, V 3, V4 and 2d3 are all given and 
lifetime predictions for the static lifetime data can be 
made from Equation 6 for given failure probabilities. 
These predictions are given in Fig. 2 but they all fall 
below the experimental data. 

To use the constant stress rate data to predict 
lifetimes under cyclic stress in rotation bending, 2~ can 
be obtained using Equation 1 lc which in turn can be 
used in Equation 8. These lifetime prediction lines for 
F = 0.1, 0.5 and 0.9 are shown in Fig. 3 and they 
appear to agree well with the experimental results. 

The cyclic lifetime data can also be predicted from 
the constant stress lifetime results shown in Fig. 2. A 
least-squares fit to these data shows that n = 56 and 
log10~4 = 160.91. 2~ can then be calculated from 
Equation l l b  and used in Equation 8 for lifetime 
predictions. However, as shown in Fig. 3, these 
predictions overestimate the real cyclic data. 

Using the dynamic strength data from Fig. 1 and 
the single-crack theory, ,,I. d and n can be determined 
using Equation 14. 2s and 2~ are calculated from 
Equation 16 and used in conjunction with Equations 
14 and 15 for lifetime predictions under static and 
cyclic stresses. These predictions are also shown in 
Figs 2 and 3 for 50% failure probability. Similarly, the 
static lifetime data of Fig. 2 can be used to predict the 
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Figure 3 Cyclic lifetime data for Nilcra's 
MS-grade Mg-PSZ for (o)  200Hz and (A) 
15.5 Hz. (After Swain [6]). ( ) Predicted 
from statistical model using constant stress 
rate data in Fig. 1; ( - - - )  predicted from 
statistical model with static data in Fig. 2; 
(-  . . . .  ) predicted from single-crack 
theory. 
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Figure 4 Comparison of cyclic lifetime 
data with predicted lines: (A) from single- 
crack theory and (C) from statistical model 
using the static data represented by (B) 
the line of best fit. Note that the correct 
trend is predicted by the statistical crack 
approach. All prediction lines are for 
F = 0.5. (Q, A) As in Fig. 3. 

lifetimes under cyclic stresses using the single-crack 
theory. Fig. 4 shows that the predicted values for 
F = 0.5 are larger than the static lifetime data, 
whereas the statistical fracture approach shows these 
to be less. 

4 .  D i s c u s s i o n  

A comparison of the lifetime experimental results 
given in Figs 2 and 3 shows that the lifetimes under 
cyclic stresses are much less than those obtained for 
static stresses of the same magnitude. This has led 
Swain [6] to postulate that cyclic fatigue, much as in 
polymers and metals, may exist due to the non-linear 
stress strain behaviour of the Mg-PSZ ceramics. 
However, the non-linear plasticity is very limited in 
the MS 'wade  of this Nilcra material and is not as 
extensive as in the TS grade. In addition, the lifetimes 
for cyclic loading is approximately independent of 
frequency (15.5 and 200Hz), suggesting that any 
cyclic fatigue effects would be small. On the contrary, 
frequency usually has a pronounced effect on stress- 
corrosion fatigue in metals and polymers [3]. 

Swain [6] noted that the cyclic lifetime data are 
inconsistent with the single-crack theory since it can 
be easily shown from Equation 16b that 

= tr.(o'Tr~/fs 
\0-ol 

(18) 

where the second subscript of t indicates "cyclic" and 
"static" stresses, respectively. For 0-, --- 0-c, tfc > tr~ 
since 2c/2s > 1.0. This prediction is, therefore, opposite 
to the actual cyclic lifetime data. With the statistical 

fracture theory Equation l lb gives 

/a.~" /(ran + 2n - 4)V4~ {" 2}/ml/C,12 
sin'xdx 

(19) 
Again for ~, -- ~ ,  2~/;~4 < 1.0 for m -- 16.4 and 
n = 52.8 so that tr< < trs as confirmed by the static 
and cyclic data shown in Fig. 4. Unfortunately, the 
predicted lifetimes from the static data (i.e. Line C), 
are much larger than the experimental results and 
it is hence tempting to suggest that a cyclic fatigue 
does exist. This argument is fallacious since, from the 
statistical fracture theory, values of tr~ predicted from 
the constant stress rate results agree well with the 
experimental data given in Fig. 3. The fact that the 
static data fail to accurately predict the cyclic lifetime 
results can be explained as follows. 

In the statistical fracture model developed in 
Section 2 it is assumed that all the samples for the 
three different kinds of test have the same flaw size 
distribution q(a) within the volume of the material, 
being described by Equation 2. This means that Or, a0 
and m are the same and this can be achieved only if all 
the samples are manufactured in the same way. If so, 
it can be shown that 

%__2 = -v4(~T+ 1 (20) 0-@3 

from Equations 9 and 1 la. Also, using the Weibull inert 
strength equation and for the same failure probability, 

0"@4 O'f4 
- (21) 

0- ,3  0-1"3 
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Figure 5 Comparison of cyclic lifetime 
data with predicted lines assuming (C) 
volume flaws or (B) surface flaws. Single- 
crack theory prediction (A) is independent 
of surface or volume flaws. All prediction 
lines are for F = 0.5. (O, A) As in Fig. 3. 

where at is the fracture strength. In Swain's experi- 
ments, V3 = 4mm x 3mm x 35mm, V4 = 4mm x 
3 mm x 15 mm and m = 16.4 so that (o-,4/o,3) = 0.89 
from Equation 20. However, inert strength measure- 
ments are not available, but af4/af3 can be estimated to 
a first approximation from Figs l b and 2 when the 
time to failure is small (here in this case tf = 6 sec) and 
this gives af4/af3 -- 0.99, which is larger than the 
theoretical value. Although this difference appears 
to be small (i.e. 0.89 compared with 0.99), if it is 
corrected for in the calculations, the net effect is 
to move up all the lifetime prediction lines for the 
constant stress rate data to the positions occupied by 
the corresponding lines of the single-crack theory 
shown in Fig. 2. 

It is realised that all the samples used for the 
three different kinds of experiment were machined 
and ground. Hence, the time-dependent strength 
properties are more likely to be determined by surface 
flaws generated by the shaping process. The theory 
developed in Section 2 can be modified to account for 
surface rather than volume flaws [5] provided that 
Equations 1 and 2 are still valid. Without going into 
mathematical details, it suffices to say from Fig. 5 that 
there is little difference in lifetime predictions, whether 
surface or volume flaws are to be used in the theory. 
Once again, the inert strength results for three- and 
four-point bending do not agree with the theoretical 
Weibull prediction. These observations leave the 
authors with only one plausible conclusion, namely 
that the flaw size distribution function of the constant 
sustained stress (four-point bending) samples is dif- 
ferent to that of the constant stress rate (three-point 
bending) and cyclic stress samples. 

Following Fuller et al. [12], Swain suggested that 
because of surface residual stresses due to machining 
and grinding the stress-corrosion exponent n obtained 
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indirectly from the slopes of the static, dynamic and 
cyclic tests is less than that determined directly from 
large crack systems as in double cantilever beams 
(DCBs), i.e. 52.8 from Fig. lb as opposed to 120 in 
DCB samples. This is unlikely to be the real cause, 
since in Swain's experiments on both annealed and 
polished samples (where the purpose is to remove the 
residual stresses associated with the shaping process), 
n -- 53 and 54 in good agreement with n = 52.8 
obtained from the constant stress rate results. How- 
ever, it must not be concluded that surface residual 
stresses do not affect n - indeed they do, since 
Swain [6] has shown that in constant stress rate tests 
on Vickers pyramid (500 N) indented samples n drops 
to 33. 

A more likely explanation for the disagreement of n 
between direct and indirect measurements is also given 
by Swain, who suggested the reason of a rising crack 
growth resistance (R) curve with crack extension. It is 
possible that the R-curve is dependent on specimen 
geometry, i.e. small-crack as against large-crack 
systems, and this will have the effect of reducing the 
crack tip stress intensity factor so that the slow crack 
growth Equation 1 is altered and n changed. The 
authors are currently developing a theoretical model 
encompassing both the R-curve and the slow crack 
growth law in lifetime predictions. 

It is recognised that the theory presented in this paper 
assumes the Mg-PSZ material to be "pseudo" linear- 
elastic even though there is some limited plasticity 
prior to fracture. As the predicted lifetimes show 
(Fig. 3), this assumption is probably justified and little 
error is introduced. However, for other much tougher 
zirconia-based ceramics, the statistical fracture model 
given in Section 2 has to be modified to include other 
effects associated with the more prominent plasticity 
and transformation toughening process. For example, 



the enhanced plasticity will generate genuine cyclic- 
fatigue-induced damage and this shortens the lifetime. 
Fatigue crack propagation rates in terms of the 
Paris power law equation [3] have to be obtained 
experimentally. Crack growth now depends on both 
Equation 1 and the Paris fatigue equation and their 
possible interactions. It should also be noted that 
because of plasticity the neutral axis will be shifted 
and this modifies the stresses acting on the flaws. In 
addition, associated with the transformation process, 
a new population of flaws may be generated and this 
is difficult to that of the pre-existing flaws. The spread- 
ing of cracks in a sample containing two flaw size 
distribution functions needs to be studied in more 
detail. 

5. Conclusion 
The main conclusion reached in this work is that 
the lifetime predictions for an Mg-PSZ ceramic in 
rotation bending can be determined from the constant 
stress rate data using the statistical fracture model. As 
opposed to the single-crack theory which predicts 
otherwise, the statistical flaw approach correctly 
predicts the cyclic lifetime values to be much less than 
those under constant sustained stresses of the same 
magnitude. There is little cyclic effect in this ceramic 
material. The failure of the constant-stress lifetime 
data to accurately predict the cyclic results is probably 
due to the different flaw size distribution functions for 
the two types of sample used in these experiments. 
Further improvements of the model are necessary to 
include other effects of pronounced plasticity, the 
crack growth resistance curve and the generation of 
new flaws associated with transformation toughening. 

Acknowledgements 
The authors wish to thank the CSIRO/Sydney Univer- 
sity Collaborative Research Fund for the support of 
this work. The frequent assistance in the form of 
original data, discussion and comments received from 
M. V. Swain and X-Z. Hu is appreciated. 

Note added in proof 
Since the acceptance of this paper it has come to our 

attention that Dauskart et al. [13] have shown that in 
Mg-PSZ ceramics cyclic fatigue crack growth obeying 
the Paris power law equation can occur in compact 
specimens containing large cracks. How relevant these 
fatigue data are to the experiments conducted by 
Swain [6] on specimens containing only small cracks 
which are randomly distributed within the sample 
volume/surfaces is not obvious to us. This paper 
brings out the significance of the statistical fracture 
model to explain why the lifetime data in cyclic loadings 
cannot be predicted from the single crack theory and 
why they are much less than the lifetime data for static 
loadings. Perhaps, in view of Dauskart et al.'s latest 
finding, we should also investigate the additional effect 
of cyclic fatigue on lifetime predictions using small 
cracks. 
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